Virtual surgery, in general is a Virtual Reality Technique of simulating surgery procedure, which help Surgeons improve surgery plans and practice surgery process on 3D models. The simulator surgery results can be evaluated before the surgery is carried out on real patient. Thus helping the surgeon to have clear picture of the outcome of surgery. If the surgeon finds some errors, he can correct by repeating the surgical procedure as many number of times and finalising the parameters for good surgical results. The surgeon can view the anatomy from wide range of angles. This process, which cannot be done on a real patient in the surgery, helps the surgeon correct the incision, cutting, gain experience and therefore improve the surgical skills.
The virtual surgery is based on the patient specific model, so when the real surgery takes place, the surgeon is already familiar with all the specific operations that are to be employed
In traditional surgery planning, the surgeon calculates various parameters and procedure for surgery from his earlier experience and
imagination. The surgeon does not have an exact idea about the result of the surgery after it has been performed. So the result of the surgery depends mainly on human factors. This leads to lots of errors and even to the risk of losing the life of the patients. The incorporation of the virtual reality techniques helps in reducing the errors and plan the surgery in the most reliable manner.
‘The virtual reality technology can serve as useful adjunct to traditional surgical planning techniques. Basic research in image processing and segmentation of computed tomography and magnetic resonance scans has enabled reliable 3D reconstruction of important anatomical structures. This 3D imaging data have been used to further understand complex anatomical relationships in specific patient prior to surgery and also to examine and display the microsurgical anatomy of various internal operations.
3D reconstruction has proven particularly useful in planning stereostatic and minimally invasive neurosurgical procedures. Modeling of deformable facial tissues has enabled simulations of tissue changes and the postoperative outcome of craniofacial surgery. Other soft tissue application includes planning Liver resection on a 3D deformable liver model with aid of a virtual laparoscopic tool.