Are you interested in this topic.Then mail to us immediately to get the full report.

email :-




Custom Search








In this page, you can find Biometrics Seminar Topics for Biomedical Engineering Abstracts, Free Reports, PPT, Presentation, Documentation, PDF and DOC downloads  


Biometric technologies are defined as automated methods of identifying or authenticating the identity of a living person based on unique physiological or behavioral characteristics. Biometrics can provide very secure and convenient authentication for an individual since they cannot be stolen or forgotten and are very difficult to forge.

•  A physiological characteristic is a relatively stable physical characteristic, such as an individual's fingerprint, hand geometry, iris pattern, or blood vessel pattern on the back of the eye. This type of biometric measurement is usually unchanging and unalterable without significant duress to the individual.

•  A behavioral characteristic is more a reflection of an individual's psychological makeup. A signature is the most common behavioral biometric used for identification. Because most behavioral characteristics vary over time, an identification system using these must allow updates to enrolled biometric references.

Biometric Accuracy

A key factor in the selection of the appropriate biometric technology is its accuracy. Biometric accuracy is the system's ability of separating legitimate matches from imposters. When the live biometric template is compared to the stored biometric template, a matching score is used to confirm or deny the identity of the user. System designers set this numeric score to accommodate the desired level of accuracy for the system, as measured by the False Acceptance Rate (FAR) and False Rejection Rate (FRR).

False Rejection Rate (FRR) refers to the statistical probability that the biometric system is not able to verify the legitimate claimed identity of an enrolled person, or fails to identify an enrolled person.

False Acceptance Rate (FAR) refers to the statistical probability of False Acceptance or incorrect verification. In the most common context, both False Rejection and False Acceptance represent a security hazard.

If a mismatching pair of fingerprints is accepted as a match, it is called a false accept. On the other hand, if a matching pair of fingerprints is rejected by the system, it is called a false reject. The error rates are a function of the threshold. Often the interplay between the two errors is presented by plotting FAR against FRR with the decision threshold as the free variable. This plot is called the ROC (Receiver Operating Characteristic) curve. The two errors are complementary in the sense that if one makes an effort to lower one of the errors by varying the threshold, the other error rate automatically increases. In a biometric authentication system, the relative false accept and false reject rates can be set by choosing a particular operating point (i.e., a detection threshold). Very low (close to zero) error rates for both errors ( FAR and FRR ) at the same time are not possible. By setting a high threshold, the FAR error can be close to zero, and similarly by setting a significantly low threshold, the FRR rate can be close to zero. A meaningful operating point for the threshold is decided based on the application requirements, and the FAR versus FRR error rates at that operating point may be quite different. To provide high security, biometric systems operate at a low FAR instead of the commonly recommended equal error rate ( EER ) operating point where FAR=FRR .


copyright © 2006 V2 Computers E-mail :-